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Effects of Assumed Tow Architecture on the

Predicted Moduli and Stresses in Woven Composites

By

Clinton Dane Chapman

Texas A&M University

ABSTRACT

This study deals with the effect of assumed tow architecture on the elastic material

properties and stress distributions of plain weave woven composites. Specifically, the

examination of how a cross-section is assumed to sweep-out the tows of the composite is

examined in great detail. The two methods studied are extrusion and translation. This

effect is also examined to determine how sensitive this assumption is to changes in

waviness ratio. 3D finite elements were used to study a T300/Epoxy plain weave

composite with symmetrically stacked mats. 1/32nd of the unit cell is shown to be

adequate for analysis of this type of configuration with the appropriate set of boundary

conditions. At low waviness, results indicate that for prediction of elastic properties,

either method is adequate. At high waviness, certain elastic properties become more

sensitive to the method used. Stress distributions at high waviness ratio are shown to

vary greatly depending on the type of loading applied. At low waviness, both methods

produce similar results.



I. INTRODUCTION

As engineering technology continues to increase, more and more demands are placed

upon structural materials in many industries, including, aerospace, automotive, and

biomedical. Composites are designed in order to fulfill these demands. Fibrous

composites are well established as being useful for many demanding structural

applications. One method of fabricating fibrous composites is weaving. By grouping the

individual fibers into fiber bundles called tows or yarns and weaving them together,

preforms can be made in complex shapes. And with the addition of resin, woven

composites are produced.

Woven composites have recently been receiving considerable attention due to their

beneficial properties compared to laminated composites. Some of these properties include

a high resistance to"damage and impact [1]. These composites also exhibit a higher

transverse moduli than their counterpart, the laminated composite [2]. Since the

composites are woven they also exhibit a resistance to delamination which is a major

failure mode for laminated composites. The contribution of these composites to

manufacturing is also substantial. Due to their ease of handling woven composites reduce

manufacturing error as well as provide the ability of near-net-shape manufacturing

capability [3,4].

To design high performance composites, accurate techniques to predict the material

properties of the composite must be developed [5]. Material property prediction can come
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from experimentsor analysis of the composite by analytical or numerical methods. Due

to the immense anaount of cost, material and man-power, that would be required in order

to get the required properties using experimental methods, analysis of the composite using

analytical or numerical methods presents the only cost effective way of predicting

properties of woven composites.

Woven composites can be constructed in several different ways depending on how

the tows are woven together. These types of weaves can be broken down into two

general categories: Two-dimensional and three-dimensional. Some 2D weaves are plain,

satin, and tri-axial weaves. The fabrication of three-dimensional composites is very

complex. To avoid such complicated geometries, this research will be concerned with the

simplest type of 2D textile composite, the plain weave.

As research continues on the analysis of woven composites, many researchers are

assuming different cross sections in their analyses. Accurate description of the tow

architecture is essential for pre_dicting the mechanical behavior of textile composites [6].

The objective of this research is to determine the effect of assumed tow architecture on

the predicted effective elastic properties of woven composites. Since an analysis of this

type will require a detailed stress analysis of the composite it is not practical to analyze

a complete structure due to the relative size of the structure compared with that of the

microstructure. The alternative is to analyze a representative volume element (RVE) to

obtain effective properties which can then be used in a structural analysis.

A substantial difficulty encountered when analyzing composites is the size of the

inhomogeneities compared to the size of the RVE I-7]. When studying unidirectional

composites, the RVE can be reduced to a section of a single fiber in matrix material, but
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for woven composites, to reduce the analysis to this minute a detail would so complicate

the analysis that it would currently be futile to attempt. A larger RVE must be considered

when dealing with woven composites. Since tile physical size of the fibers is too fine to

model these properties must be accounted for using a homogenization process.

Homogenization of the properties of the fiber tows can be perforrned using several

techniques [9]. However, this homogenizatiot)must capture the transversely isotropic

nature of the fiber tows. After homogenization, the tows can be idealized to any

geometry which greatly simplifies the analysis.

Due to the highly complex geometry of the fiber tows inside woven composites

which will be modeled in this analysis, it is difficult to model the RVE using analytical

methods [2]. Instead, the finite element method will be used due to its ability to represent

complex geometries and give detailed stress levels throughout the RVE. By employing

traditional 3D finite elements, a detailed analysis will be performed to determine the

effect of various geometrical assumptions on the behavior of the composite.

As stated earlier, this research is primarily concerned with the plain weave. A

typical plain weave is shown in Figure 1.1 (the resin pockets have been omitted for

clarity). This type of composite has only 0 ° and 90" tows which follow an undulating

tow path. In this study, the warp and fill tows will be assumed to be identical. The warp

tows run in the primary load carrying direction. For this study, the load carrying

direction will be the x direction. The fill tows run perpendicular to them in the y

direction.

Many cross-sections have been considered in the literature, including the Pierce

geometry, race-track, and lenticular. For this research, the lenticular geometry will be
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Fill Tows
Warp Tows

Figure 1.1: Typical plain weave composite unit cell modeled with finite elements

with warp and fill tows indicated.



used. The cornplexity of the analysis is highly dependent on the assumptions made when

describing the shape of the tows. Obviously, one does not want to model details which

are insignificant. Since there are many assumptions which can be made about the

geometry of the composite, these must be considered individually to determine there

significance. The objective of this study is to determine the effect on moduli and stress

distribution of how the cross-section is assumed to sweep-out the volume of the tow. A

study of how this effect changes with waviness of the tows will also be considered.

Since the geometry of the unit cell is fairly complex, reduction of the unit cell due

to symmetries in the RVE will be exploited to allow a more detailed analysis of the

composite. Various load cases produce different boundary conditions and each will be

developed in detail for various subcells of the unit cell.

This research will hopefully provide needed information which will help future

researchers in the investigation of woven composites. To this end this research is

presented in the following chapters.



lI. LITERATURE REVIEW

In the last twenty years, woven composites have received considerable attention

due to their complex nature and beneficial properties. Modeling the behavior of. woven

composites is difficult because of their complex geometry, but it is this geometry which

gives these composites their favorable properties.

The scale of woven composites compared to the scale of the fibers used in the

tows of the composite is one difficulty in the analysis of woven composites. For finite

element modeling it is impractical to try to model a woven composite with a resolution

fine enough to capture individual fiber influence due to the enormous amounts of memory

and computer time which would be required. One solution to this problem is to combine

the properties of the resin and fibers in the tows. This process is known as

homogenization. Homogenization theories assume that the scale of the microstructure is

small compared to the size of the composite, and that the composite can be represented

as an homogeneous medium [8]. Much work has been done on the homogenization of

material properties including a text by Mura [9] which covers many applicable methods

for homogenization of material properties for unidirectional composites. One particular

method which presents an appealing solution due to its ease of implementation and

reliable results is the Mori-Tanaka method.

The main focus of research on woven composites has been directed into prediction

of effective moduli as well as stress analysis and failure prediction. There have been

several attempts to predict effective properties using analytical methods with some relative

success. Analytical methods have also been used to try to predict stress distributions with
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little successdueto theinadequaterepresentationof thethree-dimensionalnatureof these

composites[2]. Finite elementshave beenemployedby researchersto model this

complexgeometry.Severalhaveused2D and3D finite elementmodelsto try to capture

theeffective moduli, stressdistributions,andsomepredictionsof failure.

Researchdoneon textilecompositescanbebrokendowninto twomaincategories:

analyticandfinite elementwork. A reviewof work in thesetwo categoriesarepresented

in thefollowing sections.

2.1 Analytic Models

Many analytic models were generated using classical laminated plate theory

[10,11]. Ishikawa [12], Ishikawa and Chou [1,13-17], and Ishikawa et al. [18] have

developed" several models for the prediction of thermoelastic properties of woven

composites using modifications of classical laminated plate theory [10,11], namely, the

mosaic model, the fiber undulation model, and the bridging model.

The mosaic model [12,13,17] idealizes a woven composite as a collection of cross-

ply laminates and is a simple means for estimating upper and lower bounds on the elastic

constants of woven composites. Figure 2.1 shows a cross-section of a five-harness satin

composite with its idealization using the mosaic model. As can be seen from the figure,

the model ignores fiber undulation as well as fiber continuity. The mosaic model does

however provide an upper and lower bounds depending on how the stress and strain are

assumed to vary through the cross-ply laminates. The two extreme cases are constant

stress and constant strain.



(a)
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(b)

Figure 2.1: Five-harness satin modeled using mosaic model: (a) cross-sectional

view of five-harness satin; (b) idealization using mosaic model.
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Another model developedby Ishikawaand Chou [17] is the fiber undulation

model. Unlike the mosaicmodel, the fiber undulationmodel takes into accountthe

continuity and undulationof fibers by assumingthat for each infinitesimal slice, dx,

along the x axis as shown in Figure 2.2, classical laminated plate theory is germane.

The compliance of each slice is a function of the amount of undulation which the fiber

exhibits. These compliances are averaged along a representative length (See Figure 2.2)

of composite and then inverted to give the overall stiffness of the composite.

The bridging model also developed by Ishikawa and Chou [1,16] is an extension

of the crimp model to idealize satin weave composites. The representative unit cell of

the satin composite is broken down into a region of undulation and several surrounding

regions. Continuity and undulation of the warp tow is ignored in this model but is

considered insignificant if the composite is loaded in the fill direction only. The stiffness

of the undulating region is found using the fiber undulation model mentioned earlier.

The stiffness of the surrounding region is found using classical laminated plate theory.

By allowing a force to be exerted on the undulation region and the surrounding regions,

an average compliance can be determined and then inverted to give an overall stiffness

of the composite. The bridging model provides excellent agreement for graphite/epoxy

composites when compared to experimental results [3].

In two papers by Naik and Shembekar [4,19], the authors extend the work of

Ishikawa et al. [17] on the fiber crimp model to two dimensions. The authors present

elastic analysis of plain weave textile lamina and laminates. They report large

discrepancies using the ID model, as reported in earlier literature, and fairly good results
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using their developed2D model. In-planeelastic moduli are found to agreewell with

experimentalresults. Laminatestackingand their offsets to one-anotherwere also

studied.

Ma et al. [25] developed a method of analyzing three dimensional composites by

representing the composite with a brick like structure whose corners are connected with

rods. Variation of elastic moduli with changes in fiber volume fraction as well as fiber

spatial orientation were given in closed form expressions.

2.2 Finite Element Work

Three dimensional finite element work has only recently become more feasible

due to the relatively inexpensive computer time and post analysis software for viewing

the comprted results of the analysis graphically. Consequently, most pre-90's analysis

deals primarily with two dimensional finite element work.

Avery and Herakovich [20] studied two dimensional woven carbon-carbon

composites. They used a quasi-three dimensional finite element model to represent the

behavior of an eight harness satin in order to get an understanding of what effects the

stress distribution in the composite. They predict how stress distributions in the fill and

warp tows of the composite are affected by changes in the stacking sequence of the

laminates. They also found that when the composite was subjected to in-plane loading,

the stress distributions were highly sensitive to changes in the geometry. The authors

state that the moduli in the region of undulation of the tows are dependent on the offset

ratio and stacking sequence. (Offset ratio refers to the distance between the undulating
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Figure 2.2: Typical two dimensional fiber RVE showing parameters for fiber

undulation model developed by Ishikawa and Chou [17].
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regions in different laminae.) The geometrychangesconsideredby the authorsare

relatedto the stackingof the wovenmatsusedto makethe compositeand not to the

physicalshapeof thetowsand tow paths.

Foye[21] performeda3D analysisto determinetheeffectivepropertiesof woven

composites. In this analysis,a 1/16thunit cell is modeledby oneeight-nodehexahedra.

Thegeometryof thetowsandcross-sectionsis not mentioned,andintegrationperformed

on the elementis doneacrossmaterialboundarieswith no apparentregardto thejump

discontinuity in material properties. He does however report fair agreementwith

experimentaldatafor a graphite/epoxywith a 64% fiber volumefraction for theweaves.

In a later paper by Masters,Foye, et al. [6] the same technique was used to

model tri-axial braided composites. A finite element model was used to idealize a tri-

axial braided AS-4 fabric impregnated with Shell 1895 epoxy resin. The results of the

analysis compared as well or better than analytical techniques in predicting elastic

properties of the composite when compared to experimental data. One analytical model

used was a laminate model, which models each set of tows in the composite as if it were

a symmetric laminate made from unidirectional plies. This model ignores any undulation

of the tows. To account for this, another model, a corrected laminate model, applies a

correction factor which can account for the braid undulation. The last model used for

property prediction was the diagonal brick model as discussed previously [25].

Whitcomb [2] developed several techniques for performing three-dimensional

finite element analysis of plain weave composites. This paper deals with aspects of

analyzing these composites which are different from the traditional analysis of laminated
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composites.Analysisof various plain weaves was performed to show the impact of tow

waviness on the overall moduli and Poisson's ratios as well as strain distributions

throughout the composite. The unit cell used by in his analysis is a quarter-unit cell as

shown in Figure 2.3. This quarter-unit cell is small enough to allow more highly refined

meshes than that of the full unit cell. Some results which Whitcomb found were that the

in-plane moduli decreases almost linearly as tow waviness is increased. Also, when the

plain weave composite is subjected to uniaxial loading, large normal and shear strains

developed due to tow waviness.

Woo and Whitcomb [2], Whitcomb and Woo [5], and Whitcomb et al. [23]

developed new macro elements which account for the spatial variation of material

properties within a single dement in order to simplify 3D analysis of textile composites.

These dements are particularly useful for analyzing a woven composite with finite

dimension because it reduces the amount of._memory required to analyze the model. The

disadvantage to using macro dements is that macro dements can only model small

number of degrees of freedom compared to that of the full finite element mesh.

Although these degrees of freedom can effectively model the stiffness of the composite,

stresses in the element are erroneous near the edges of the elements. However, away

from the edges of the macro elements, Woo [8] reports very close agreement with

standard finite element results.

Paumelle et al [24] presented an analysis of woven composites by homogenization

of the fibers and resin to get tow properties and then homogenizing the tows and resin

to get composite properties. Stresses induced inside the woven composite microstructure
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Figure 2.3: Quarter unit cell of plain weave textile composite used by Whitcomb [6].
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were calculated using three dimensional finite elements. This analysis was performed

on a balanced glass fabric embedded in an epoxy resin. The primary goal of their study

was to reveal the overstresses of the materials in the composite as well as point out the

problem of delamination at the yarn-matrix interface. They point out in their

investigation that the overstresses induced in the composite can be as much as 7.8 time

the macroscopic loading. They also contend that the resin undergoes the maximum

loading relative to its strength and that failure will initiate there.

In an earlier study [7], Paumelle et al presented results which reflect the effect

of geometry changes on the effective properties. The geometry effects considered were:

1. Distance between yarns which is analogous to waviness ratio.

2. Shape of yarn section which reflects the flatness or circularity of the cross

" section.

3. Fiber content of the tows.

4. Resin thickness between layers of fabric.

The authors make several conclusions based on their study. They observe that

the Young's modulus of the resin greatly effects the values of E,, G_,, and Gyz. Also,

the remark that a readjustment of the yarn shape could increase the shear modulus of the

composite.

Woo [8] studied woven composite using two dimensional and three dimensional

finite dements. The author's research dealt with the study of two types of macro

elements: single-field and multi-field. A comparison of results obtained with these

special elements was compared to conventional finite elements. Also, work was



16

performedto determineinitial pointsof failure in tile compositeas well as somework

on the prediction of elastic propertiesand their variation with waviness-ratio. The

material systemusedby Woo was a T300 graphitefiber in an epoxy matrix. Since

Woo's work contains work which is initially closely related to this researcl_,these

materialpropertieswill beusedin all analysisin this thesis.

s
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III. THEORY

This chapter contains relevant theory related to plain weave composites. The

purpose of this chapter is to give the reader a better understanding of woven composites

and explain how and why certain results were obtained. A description of various terms

related to woven composites will be covered in the following section. After this

description, mesh generation will be covered to explain the theory involved in the

generation of the finite element meshes used for this research. Next, application of loads

to the meshes will be covered along with the appropritate boundary conditions for the

RVE's used in this research.

3.1 Nomenclature
p

A woven composite like conventional fiber composites is made of a matrix

material surrounding fibers. However, the fibers in a woven composite are twisted into

a dense fiber bundle called a tow which can be combined with other tows to make a

textile. After the addition of resin, the tow contains resin and fibers. The fiber properties

can be homogenized with the resin to give effective properties of the tow. These

homogenized properties can be found using micromechanics. For a plain weave, there

are two different names for the tows - warp andfill. The warp tows run in the primary

load carrying direction, and the fill tows run perpendicular to them.

The tow is characterized by a tow path which is a desciption of how the

midplane of the tow changes with position. The tow path of a typical tow is shown
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in Figure 3.1. The tow path is the most important feature in describing a woven

composite. It will be shown later that by specifing a tow path, many parameters which

further describe the tows can be found. For this study, only sinusoidal paths will be

considered.

The tows of a composite are characterized not only by the tow path but by a

parameter refered to as waviness ratio (WR). Waviness ratio is - as the name suggests -

a measure of the waviness of a tow. It is more specifically, the ratio of the thickness of

the mat to the wavelength of the tow path. Or in equation form

wR=t 3.1.1
2

where t is the thickness of the woven mat and X is the wavelength of the towpath (see

Figure 3. t).

Tows can be woven together in many ways. The one that this research is

concerned with is the plain weave. This type of weave has only 0 ° and 90 ° tows which

follow an undulating tow path. A typical plain weave is shown in Figure 3.2. In this

study, the warp and fill tows are assumed to be identical. This is type of configuration

is known as a balanced weave.

Several other terms describing the assumed geometry are also utilized, but these

are better addressed in the following section on mesh generation.
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WR= t/z,

Figure 3.1: Cross-section of plain weave showing towpath and parameters

used in waviness ratio.
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Z

Fill Tows

Warp Tows

Figure 3.2: Typical plain weave composite unit cell modelled with finite elements

with warp and fill tows indicated as well as coordinate system used in this study.
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3.2 Mesh Generation

In order to determinetheeffectof geometryon theeffectivepropertiesandstress

distributions,a meshgenerationstrategymustbe developedin order to automatethe

tedioustask of meshgeneration. Sincethe geometryof wovencompositesare rather

unique, thegenerationstrategymustbeconsistentwith the geometryof the tows. The

following sectiondetails the developmentof meshesusedin this thesis. To generate

three dimensional meshes,an understandingof the generation of simplier two

dimensionalmeshesis beneficial. Therefore, meshgenerationfor 2D modelswill be

discussedfirst, thengenerationof 3D modelswill beaddressed.

3.2.1 Generation of 2D tow by translation of cross-section

Translated tQws are the simpliest to generate and understand. The term translated

actually refers to the way a representative cross-section is used to generate a solid object

(see Figure 3.3(a)). For 2D models, it physically means the distance above and below

the tow path is kept a constant. For a tow path described by the function f(x), the top

and bottom of the tow are given by f(x) +h/2 where h is the height of the fiber tow.

Knowing this, generation of elements for the tow can be done by simply using this

functions to pick off values for the top and bottom.

described by

f(x) =sin(x)

For example, if the tow path is

; 3.2.1

and has a height of h=2, then the top and bottom are described by the functions
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Y

X

(a) Translated cross-section.

Y

X

(b) Extruded cross-section.

Figure 3.3: Solid objects created by translating and extruding a cross-section.
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gr(x) =f(x) + 1 =sin(x) + 1
3.2.2

gn(x) =fix) - 1 =sin(x) - 1

respectively, where the subscripts 'T' refers to the top and 'B' to the bottom of the tow.

The coordinates for the top and bottom of a translated tow is represented by a function

which is no more complicated than that which describes the tow path.

The translated tow does have one major drawback, distortion of the tow at high

waviness ratios. For example, a tow path described by the function

f(x) =sin(&) 3.2.3
X

with a height of 2, has a WR= 1. This tow is shown in Figure 3.4. The thickness of the

tow is dramatically smaller near 'A' than at 'B' as indicated by the arrows. This is

physically inaccurate because the tow still contains the same amount of fibers so should

be the same width at 'A' and 'B'. A better way would be to keep the thickness

perpendicular to the tow path constant. This method of generation will be termed

extruded.

3.2.2 Generation of 2D tow by extrusion of cross-section

As stated above, the extruded tow is generated by keeping a constant distance

perpendicular to the tow path. Figure 3.3(b) illustrates how a representative cross-

section is used to generate a solid model. Functions for the top and bottom of the tow
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A

B

A

Figure 3.4: High waviness ratio translated tow showing unrealistic tow

thicknesses through the tow.
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Figure 3.5: Right triangles used to derive equations for extruded tows.



26

canbederivedusingthePythagoreanTheormwith thetriangleshownin Figure 3.5,

a2+bZ=cZ 3.2.4

Dividing by a 2 gives

b 2 c 2
1. - 3.2.5

a 2 a 2

Rewriting using trigonometric functions for the r.h.s, gives

cosZO
3.2.6

here O is the angle opposite side b. Setting a=dx and b=dz as shown in Figure 3.5

gives

+(dz/2 1
1 t )=cos20

3.2.7

or, using z=f(x) t gives

1 +f(x) 2- 1 3.2.8
cos20

Solving for cos0 gives

1
' ..... cosO= 3.2.9

(x)' ÷l

tz is used so that transition to the discussion of 3D mesh generation will be made

simpilier.
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Similarly, an equationfor sin0 canbederivedand is givenby

sin0=- fl(x)

_/ff(x) 2+ 1

3.2.10

Using the above relations for sin0 and cos0, it is possible to obtain values for

zXX-r, Azt, AxB, and _-t_ as _Eown in Figure 3.6. These relations in terms off(x) and h

as shown in Figure 3.6 are

Zlxr = h if(x) 3.2.11

2 _[fl(x)2 + 1

3.2.12

3.2.13

h 1
AZa=

2 J.t"(x)'+x

Adding these relations to x and z=f(x) gives

3.2.14

h /'(x)
xr(x)=x--

2 _2+i

3.2.15

zr(x)4(x) ,
h 1

2 _/f(x)_+1
3.2.16
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a

(xB(Xo),ys(Xo))

'XT(Xo),YT(Xo ))

.(x)

Figure 3.6: Parameters involved in the derivation of extruded tows.
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xs(x) =x+ h f(x) 3.2.17

2 _[f/(x)2 + 1

h I
zn(x) =fix) 3.2.18

2
_/ft(x) 2 + 1

To obtain an equation, gT(x), which describes the top surface of the tow, one must first

recognize that

as shown in Figure 3.6.

ft(x)=g_x r)

Starting with

3.2.19

ggxT)=zgx)=_x)+
h 1

2 J/'(x)_+1

Substituting (3.2.19) into (3.2.20) gives

g,_x_)=fCx)
h 1

Solving for x in (3.2.15) and substituting in (3.2.19) gives

3.2.20

3.2.21

X =XT'I"

h g'gx )

2 _/g_(xr)2 + 1

Finally, substituting (3.2.22) into (3.2.21) gives

3.2.22

h h 1 3.2.23
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It is cumbersometo solvethis highlycomplicatedequationfor gr(x) to determine points

on the tow path. An approximate sohttion can be obtained by fitting a spline through

points generated using equations (3.2.15)-(3.2.18) and then evaluating the spline along

the path. This spline technique was used herein.

As with translated tows, extruded tows have disadvantages. Half the height of

a translated tow cannot exceed the radius of curvature of the tow path or the formulation

The radius of curvature, p, for a functionf(x) isfor gx(x) will become multivalued.

given by

which gives the condition

3

(1 ÷fl(x)2) 2
p=

l

h

If a tow path is described by the function

with a height of 2, the waviness-ratio is

4
WR=--

2

3.2.24

3.2.25

3.2.26

3.2.27
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Substituting(3.2.26)and(3.2.24) into (3.2.25)gives

)))
1<

The r.h.s, is minimum when x=_, which gives

3.2.28

This condition is false for h<2r. This implies that WR cannot exceed 4/21- for an

extruded tow with this particular combination of tow path and height. This is important

to know because it implies that the height of a tow has a maximum value for a specific

tow path.

3.2.3 The 90 ° tows

So far all that has been discussed is generation of one tow which will be termed

the 0 ° tow. The tows running perpendicular to the 0 ° tows will be designated as the 90 °

tows. If one assumes that the 0* and 90 ° tows have the same tow path, then a maximum

height of the tow can be found. The height, h, of the tows is given mathematically as

h =max(f(x)) -min(f(x)) 3.2.30

This equation assumes that the minimum of the 90 ° tows occurs at the maximum of the

0 ° tows and vice versa - which is the case for plain weaves. The thickness of the mat

may also be found and is given by
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t=2h 3.2.31

With this it is possible to proceed to the development of the cross-section of the 90 °

tows.

3.2.4 Cross-Sections

The cross section of the 90 ° tows is determined by the tow path of the 0 ° tows.

There are an infinite number of different cross-section shapes which can conform to this

statement. However, it is important to consider what constrains the cross-section shape

in order to get a maximum area cross-section shape. Since both the 0 ° and 90 ° tows

always want to straighten after being woven together, they are forced to contact. As a

simplifing assumption, if the cross-section is assumed to be constant along the tow path,

then the shape is _nstrained and only one maximum area cross-section exists. The

cross-section generated by way of this assumption is symmetric about the mid-plane of

the tow. This means that the distance form the mid-plane to the top is the same as the

distance from the mid-plane to the bottom of the tow. The cross-section can then be

represented by a function h(x) which gives the distance from the lower surface to the

upper surface of the cross-section. Consequently, the distance from the mid-plane to

either the top or bottom of the cross-section is just h(x)12 (see Figure 3.7).

3.2.5 Generation of 3D translated tows

After the cross-section has been determined, generation of 3D tows is possible.

The top and bottom of a single 0 ° translated tow are created using a formula similar to
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X

Figure 3.7: Cross section of tow showing function for height, h(x).
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that usedin 2D (eq. (3.2.2)),

gro(x,y)--f(x)+h(Y---2)
2

gBo(x,y)__f(x) h(y)
2

Notice that the only difference is that h is now a function y. (The '0' in the subscipt on

g refers to the 0 ° tow.) Coordinates defining the surface of a translated tow may be

picked easily using the above formulas. The tow path of adjacent 0 ° tows for a plain

weave are offset in the x direction by X/2. This gives the following equations for

adjacent 00 tows:

=f(x+_.A)+h(y)gro(X,Y) 2 -5--

g.o(x,y)= x

3.2.33

The 90* tows may also be added by using the above formula and making a change

of variable (ie. switching x and y).

g_(x,y) =1ry+c)+_

g Bgo(X,y)=fl,y +c)

h(x +r)

2

h(x +r)

3.2.34

To insure compatibility between the 0 ° and 90 ° tows, c and r have been added to the

previous equation. An example may clarify the meaning of c and r.
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Example: If a tow path is given by

Then the top and bottom surface of the 0 ° and 90 ° tows are described by

3.2.35

and

go(X,y) =Acos( _--_ ) ± _-_
3.2.36

)ggo(X,y)=Ac 2zr +c) ±
2

At (x,y) = (0,0), gno(O,O) should equal gr_,(O,O). So to insure this, c and r should be

given the values

c= ,r=0. 3.2.38

Next, generation of 3D extruded tows will be covered.

in the same way as it is for the translated tows above.

Compatibilty will be enforced

3.2.6 Generation of 3D extruded tows

The extension from 2D to 3D is also not difficult for extruded tows. The main

difficulty is an increase in the amount of data which must be kept. Using equations

(3.2.15)-(3.2.18) and substituting a function in for h which describes the cross-section,

the following equations are produced
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xr(x,y)=x- h(y) f_(x) 3.2.39

2 f/x/j_2 + i

zr(x,y)=./(x) +hb,) 1
2 _/fl(x)2+ 1

xB(x,y)=x, h(y) f'(x)
2 _/f(x)2 + 1

3.2.40

3.2.41

Again, it may be possible to obtain equations describing the top and bottom surface of

the tow, but these equations will be highly non-linear and difficult to solve. Using a

two-dimensional spline fit or collections of !D splines, it is possible to obtain an

approximiate function for the upper and lower surface of the tows.

In the above equations, (3.2.39)-(3.2.42), h(y) has been included. This function

for the cross-section of the tow must also be approximated using splines. Using all of

these splines means that a substantial amounts of "book-keeping" must be performed in

a mesh generation program.

To obtain equations describing the 0 ° tows adjacent to the single 00 tow, an offset

of X/2 must be added to x as shown in the translated section previously. The equations

describing the 90 ° tows can also be generated similar to the translated section using the

constants c and r.

zn(x,y)=/(x) h(y) 1 3.2.42

2 _2+1
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Severalextrudedtowsareshownin Figure3.8. As indicatedby thearrow in the

figure, thereexistsagapbetweenthe0° and 90 ° tows. This gap is not present with the

translated tows. The gap exists between the extruded tows because the edges of the

perpendicular tows, which are the same as the tow path of the perpendicular tow, do not

have the same shape as the cross-section of the tow where the two tows should meet.

This is shown in Figure 3.9. This is not true for the translated tows whose cross-section

shape is the same as the part of the tow path in contact.

3.2.7 Generation of Matrix

After generating the tows using any method, all that remains is to generate the

matrix elements. Generation of the matrix elements for the translated model is fairly

simple to accomplish. This is done by breaking the matrix into two regions - one above

the tows and one below the tows - and generating each region seperately. For the upper

region, the containing surfaces are the top of the tows and a plane where z = constant.

The elements are created by just picking off points from the upper plane and top of the

tows and then dividing the region into the number of desired elements. A l/Sth subcell

translated mesh which has been sectioned is shown in Figure 3.10.

For the extruded model, this strategy is all right if the matrix elements being

created are above or below two tows. But the extruded model has a few surprises.

There exists a matrix pocket between the warp and fill tows as shown in Figure 3.8 and

Figure 3.9. Elements must be created for this region also, and additionally, must be
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Figure3.8: Extrudedtowswith arrowindicatinggapbetweenwarp
andfill tows.
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Cross-sectionof tow

.

Edge of perpendicular tow

(same as tow path)

Position of cut

Figure 3.9: Cross-section of extruded tow showing that edge of perpendicular

tow does not have same shape as cross-section.
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incorporatedinto the restof the matrix. Figure3.11 showsa seperatedl/8th subcell

extrudedmeshand onepossibleway to do this.

3. 2. 8 Variation of material properties

The material properties of the tows can be found by homogenizing the properties

of the individual fibers with the resin. These properties can then be applied to the

individual elements representing the tows of the composite. Although, the tow is

assumed to be homogeneous and transversely isotropic in the material coordinate system,

the orientation of the tow in the global coordinate system varies considerably depending

on the angle of the tow path at a particular point.

translated tows is constant along lines of constant x.

The angle of rotation for the warp

For the warp extruded tows, angles

of rotation are constant along lines which are perpendicular to the tow path.

For this research, the variation of angles of rotation for the warp extruded tows

will be assumed to vary linearly along lines of constant x. In was found that the actual

variation of the angle across the tow varied less than 0.5 ° from this linear fit at a WR =

1/3. This is assumed to be a small effect and will add little error to the analysis. Unit

cells with lower waviness ratios will experience even less deviation from the correct

angle.

For each element two methods of specifing the angles for the elements will be

studied for initial analysis. One method assume a constant rotation angle for an entire

element. This will be refered to as the single angle method. The next method allows
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a variation of material properties at each integration point by specifing the angles at the

nodes of the element and then interpolating using shape functions to obtain the values at

integration points inside the dement. This method will be refered to the multiple angle

method.

These methods will be examined in a convergence study later in this chapter to

determine which method is better and if such complication is truly necessary.

3.2.9 Parameters describing meshes

To differentiate between different meshes used in this research, a brief description

will be presented for several different meshes and parameters used in their generation.

Two full unit cells of a woven composite are shown in Figure 3.12. The size of

the unit cell is dependent on the stacking sequence of the mats. For symmetric stacking,

the unit cell is larger than the unit cell for simply stacked mats. The basic building block

of both unit cells is 1/32nd of the unit cell for the symmetric stacking and 1/16th the size

of the simply stacked. This smaller block is shown in Figure 3.13. To generate a mesh

for this smaller cell, three numbers will be used to describe the division of elements

inside the mesh. The first number represents the number of elements through each fiber

tow in the z direction. The second number represents the number of elements through

each fiber tow in the y direction for the 00 tow and x direction for the 90 ° tow. The

third number is the number of elements above the tows and below the tows. For
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(a) Unit cell for symmetricallystackedmats

(b) Unit cell for simplystackedmats

Figure3.12: Unit cells.
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Figure3.13: Basicbuildingblockof unit cellsin Figure3.12.
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example,a 1/32nd243 modelof a wovencompositewith translatedtows is shownin

Figure 3.14.

In this research,the numberof divisions will not exceed9 for any of these

indiciesdue to immenseamountof memorythat this would require,consequentlythis

numberingschemewill beadequate.

3.3 Boundary Conditions

Boundaryconditionsfor wovencompositesvary with thetypeof unit cell being

usedand the type of loading being applied. For a general unit ceil, the boundary

conditionsarecompletelyperiodic. This meansthatanydisplacementon onesidemust

be thesameon the.oppositesideplusor minussomeconstant. Any periodicloadingcan

beappliedto the full unit cell with theseboundaryconditions. Due to symmetries

which exist in theunit cell, reductioncanbeperformedto theunit cell in order to allow

a moredetailedanalysisof thecompositewhensubjectedto specifictypesof loads. The

boundaryconditionsmustbe modified for thevarioussubcells. To derivetheboundary

conditionsfor thevariousRVE's usedin thisanalysis,a generalapproachwill beused.

The following will apply to the symmetricallystackedmatsas shownin Figure 3.12.

The derivation for simply stackedmatsis very similar andwill not becoveredin this

research.The periodicboundaryconditionswill begivenfor a generalfull unit cell, and

thesewill thenbe modifiedfor different typesof loading.



47

Y

X

90* Tow (Fill Tow)

0 ° Tow (Warp Tow)

Figure 3.14: 1/32nd 243 translated model.
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3.3.1 Periodic boundary conditions of general unit cell

For the unit cell in Figure 3.15, the periodic boundary conditions are summarizeA

in Table 3.1. These equations fully describe all the displacements on each face of the

unit cell.

Since the distance between any one face and its oppsite face is always constant

after a load has been applied, ie. at equilibrium, the macroscopic displacement gradients

of the unit cell can be calculated. These are given by

( O-_xx)o-ua-Un'a ' (0__)o_ UA-UC'a" (a-_Z)0 - u't-un2c
3.3.1

(--_)0 -vA-vs'a ' (_) -vA-vc'Oa " (-_)o -va-v02c
3.3.2

('---_')o '- w't-w--'--'-_B;a (_)o "wA-wc'a " (_)o -wA-w02c
3.3.3

Substituting eqns. (3.3.1), (3.3.2), and (3.3.3) into the periodic boundary conditions

gives the following nine periodic boundary conditions

3.3.4

a a 0v

v(-_,Y,Z.) =v(- _-,Y,Z) +a(-_) °
3.3.5

w(a, ,z) -- a .+(Ow'_
Y q, Jo

3.3.6
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x
Y

D

Figure 3.15: Unit cell used for derivation of boundary conditions.
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2 z L_)o

a a + 0%,

3.3.7

3.3.8

3.3.9

u(x,y,c)=u(x,y,-c) +2c(-_ ) °
3.3.10

3.3.11

w(x,y,c)=w(x,y,-c) +2c(--_ ) ° 3.3.12

These boundary conditions are the basis for any reduction which is to be made to the unit

cell.

Macroscopic engineering strains can also be calculated using the following

equations

3.3.13
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0v 3.3.14

az)o
.3.3.15

3.3.16

3.3.17

3.3.18

3.3.2 Extension

Starting with the full unit eell as shown in Figure 3.15, boundary conditions for

the l/8th and 1/32nd subcells can be derivied for extension. If an extension is applied

along the x-axis, the only non-zero macroscopic strains are cx, ey and 7z" If we define

and impose that

3.3.19

u A=-us=u o, vA=-%=vo, w A=-wo=w o 3.3.20

then by inserting these into the periodic boundary conditions given in Table 3.1 gives the

nine following periodic boundary conditions for extension.
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a
At x=+--

2

u( 2 ,Y,Z)=U(-2 ,Y,Z) +2Uo
"3.3.21

a a 3.3.22

a a

w(_,y,z)=w(-_,y:)
3.3.23

a
At y=±--

2

a a

u(x,-_,z)=u(x,--_,z)
3.3.24

a

v(x,-_,z)=v(x,--_,,z)+2v,
3.3.25

a a 3.3.26

and at z=+c
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u(x,y,c)=u(x,y,-c) 3.3.27

v(x,y,c)=v(x,y,-c) 3.3.28

w(x,y,c)=w(x,y,-c)+2W o 3.3.29

Symmetry about the xy, xz, and yz planes produce the following useful relations.

xy." u(x,y,z)= u(x,y,-z)v(x,y,z)= v(x,y,-z)
w(x,y,z)=-w(x,y, -z)

3.3.30

XZ."
{ u(x,y:)= u(x,-y,z)

v(x,y,z)= -v(x,-y,z)
w(x,y,z)= w(x,-y,z)

3.3.31

u(x,y,z)=-u(-x,y,z)
• yz.: "v(x,y,z)= v(-x,y,z) 3.3.32

w(x,y,z) = w(-x,y,z)

If these symmetries are applied to eqns. (3.3.21)-(3.3.29), the following non-trivial

equations are produced.

a

u(2,y,z) =-u(-.-_,y,z) =Uo 3.3.33

a a

vCx,-_:.)=-vfx,--_,z)--Vo
3.3.34

w(x,y,c)=-w(x,y,-c) =Wo 3.3.35

Eqns. (3.3.33)-(3.3.35)are the non-trivial periodic boundary conditions for extension of
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the woven composite unit cell in Figure 3.15.

at x,y,z = 0

Eqlls. (3.3.30)-(3.3.32) also imply that

u(O,y:)=v(x,o,z)=w(x,y,o)=0
3.3.36

This equation along with eqns. (3.3.33)-(3.3.35) fully describe the boundary conditions

for the each l/Sth subceU in the unit cell. If the origin is now translated to center of the

l/8th unit cell in the region x,y,z > 0 as shown in Figure 3.16, the boundary conditions

on the l/8th unit cell become

.a . . a . u.

v(x a . _ a , v,

C C Wo

_x,y,-_)=-w(x,y,--_)=-T.

3.3.37

To get boundary conditions for the 1/32nd subcell, symmetries in the l/Sth subcell must

be exploited. Anti-symmetry about the x, y, and z axes in the 1/Sth subcell shown in

Figure 3.16, gives the following relations.

x-ax/s:
u(x,y,z)= u(x,-y,-z)
_x,y,z) =-v(x,-y,-z)
w(x,y,z)=-w(x,-y,-z)

3.3.38

y-a.x/s:
u(x,y,z)=-u(-x,y,-z)
v(x,y:) = v(-x,y,-z)
_x,y:)=-w(-x,y,-z)

3.3.39

z-ax/s:
u(x,y,z)=-u(-x,-y,z)
v(x,y,z)=-v(-x,-y,z)
w(x,y,z)= w(-x,-y,z)

3.3.40
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Theseequationsimply that on theyz, xz, and xy planes in Figure 3.16, the boundary

conditions become

yz:
u(O,y,z)=-u(O,y,-z)=-u(O,-y,z)
v(O,y,O= v(O,y,-O---v(O,-y,O

w(O,y,z)=-w(O,y,-z)= w(O,-y,z)

3.3.41

X7.:
u(x,O,z)=-u(-x,O,z)= u(x,O,-z)
v(x,O,O---1,(-x,O,z)=-v(x,O,-O
w(x,0,z)= w(-x,O,z)=-w(x,O,-z)

3.3.42

xy:

[ u(x,y,O)=-u(-x,y,o) = u(x,-y,O)
v(x,y,O) = v(-x,y,O)=-v(x,-y,O)

w(x,y,O)=-w(-x,y,o) =-w(x,-y,O)

3.3.43

These boundary conditions are valid for two different 1/32nd subcells. However, only

the one shown in Figure 3.17 will be used for this study due to the mesh generation

strategy used. The boundary conditions used for extension are

a u,
u(-_-,x,y) =-_- 3.3.44

W

w(x,y,c)=w(x,y,-c)= ° 3.3.45
2

a Yo

v(x,_-,z) :-_- 3.3.46

yz:
u(O,y,z)=-u(O,y,-z)
v(0,y,z)-- v(O,y,-z)

w(0,y,z.)---w(0,y,-O

3.3.47
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a/2

C

Y

X

Figure 3.16: l/8th subcell used in derivation of boundary conditions.
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a/4 a/4

Y

°.

Figure 3.17: 1/32nd subcell used in derivation of boundary conditions.
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J[_."
u(x,O_)= u(x,O,-z)
v(x,O,z)---v(x,O,-z)
w(x,O,z)=-w(x,O,-z)

3.3.48

With the boundary conditions fully described for the full, l/8th and 1/32nd subcells for

extension, we will proceed to the boundary conditions for an applied _= shear strain.

3.3.3 E,_ shear

Starting again with the full unit cell in Figure 3.15 and applying a shear strain,

boundary conditions will be derived for the l/Sth and 1/32nd subcells. If a shear strain

is applied such that

WA=-WB=Wo; UA=-UD=Uo

thenon-zeromacroscopicdisplacementgradientsaregivenby

(ow/ =2,,,°
I,)-_zo-C' _,aX)o a

3.3.49

3.3.50

Applying these to the periodic boundary conditions given in Table 3.1 gives the nine

following periodic boundary conditions for shear.
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a
At x=±--

2

u(2 ,Y,Z)=U(-2 ,Y,Z)
.3.3.51

3.3.52

a a

w(-_,y,z)=w(-_,y,z.)+2Wo
3.3.53

a
At y=±--

2

3.3.54

_,_,:_, _:,o 3.3.55

3.3.56

and at z=+c

u(x,y,c)--u(x,y, -c) +2u ,, 3.3.57

v(x,y,c) =v(x,y,-c) 3.3.58

w(x,y,c) =w(x,y,-c) 3.3.59
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Symmetry about the yz, xy, and xz planes gives

yz." u(x,y,z)= u(-x,y,z.)
v(x,y,z)=-v(-x,y,z.)
w(x,y:) =-w(-x,y,z)

3.3.60

xy.-
u(x,y,z)=-u(x,y,-z)
v(x,y,z) = -v(x,y, -z)
w(x,y,z)= w(x,y,-z)

3.3.61

XZ'.
{ u(x,y,z)= u(x,-y,z)

v(x,y,z)=-v(x, -y,z)
w(x,y:) = w(x,-y,z)

3.3.62

If these symmetries are applied to the above periodic boundary conditions, the non-trivial

boundary conditions become

a a

v(_,y,_)--v(-_,y_)=0
3.3.63

a a 3.3.64

0 3.3.65

u(x,y,c)=-u(x,y,-c) =u,, 3.3.66

v(x,y,c)_-v(x,y,-c)=O 3.3.67

Using eqns. (3.3.60)-(3.3.62) at x,y,z = O, the following boundary conditions are also

established for each l/8th subcell.
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yz" v(O,y_)=-v(O,y:.)=ow(O,y,z)=-w(O,y,z)=0

3.3.68

u(x,y,0) = -u(x,y,O) =0 3.3.69xy: v(x,y,0)=-v(x,y,0)--0

xz: ( v(x,O,z)=-v(x,O,z)=O 3.3.70

Shifting the origin to the center of the 1/8th unit cell in the region x,y,z > 0, the

boundary conditions for this region become

a a c

v(_,y,z)=v(-_,y,z.)=v(x,y,._) =

v(x,Y,-2 )=v(x,4 ,z)=v(x,-4 ,z.)=o

3.3.71

a a wo 3.3.72

u(x,y,c)= -u(x,y,-c)= u° 3.3.73
2

To get boundary conditions for the 1/32nd subcell, symmetries in the I/8th subcell must

be exploited. Anti-symmetry about the y axis produces

u(x,y,z)=-u(-x,y,-z)
v(x,y,z)= v(-x,y,-z)
w(x,y,z)=-w(-x,y,-z)

3.3.74

which gives at x=0
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u(O,y,z)=-u(O,y,-z)
v(O,y:)--v(o,y,-O
_O,y:)=-w(O,y,-z)

3.3.75

Noting that a negative load gives the opposite displacement than that of the same but

positive load, the v displacement gives

v(x,y,z) I+_.:-v(x,Y,Z) [__,_ 3.3.76

Since the -y region of the l/8th subcell is anti-symmetric to the +y region, the shear

being experienced by the -y region is opposite that being experienced by the +y region.

This gives

(3.3.76) into (3.3.77). gives

a

So, along y = 0,

Similarly,

v(x,y,z) I+_,,=-v(x,-y,-z) I__= 3.3.77

v(x,y,z) I_,=v(x,-y,-z)I_= 3.3.78

v(x,O,z)=v(x,0,-z) 3.3.79

w(x,O,z) =w(x,O,- z) 3.3.80

The above fully specifies the boundary conditions for each 1/32nd subeell in the l/8th

subcell. The following is a summary of the non-trivial boundary conditions for the

1/32nd subcell shown in Figure 3.17 subjected to e_ shear.



64

a c c a

V(-a,y,z)=v(x,y,_)=v{x,r,-_)_-v(x,_,O_-o
3.3.81

3.3.82

u(x,y,2 ) =-u(x,y,__c}__u,2- 2
3.3.83

u(O,y:)=-u(O,y,-z)
v(O,y:)= v(O,y,-z)
w(o,y:)=-w(O,y,-z)

3.3.84

u(x,O:) =-u(x,O,-z)
v(x,O,z)= v(x,O,-z)
w(x,0,z)= w(x,O,-z)

3.3.85

Boundary conditions have been specified for the full, l/8th and 1/32nd subcell for e_

shear. Next % shear will be covered.

3.3.4 % shear

Again, starting with the periodic boundary conditions for the full unit cell,

boundary conditions will be derived for 1/8th and 1/32nd subcells. If a special case of

macroscopic E_ shear strain is applied such that

uA=-uc=v A=-v n=d 3.3.86

the non-zero macroscopic displacement gradients are given by

3.3.87
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Applying theseto the periodic boundaryconditions given in Table 3.1 gives the nine

following periodic conditions for shear.

a
At x=±--

2

a a

u(__,y,z)=U(-x,y,z.) 3.3.88

a

v(-_,y,z)=-v(- _,y,z)+za
3.3.89

3.3.90

a
At y=+--

2

q

3.3.91

a a

v(x,-_,z)=v(x,--_,z)
3.3.92

3.3.93

and at z=±c

u(x,y,c)=u(x,y,-c) 3.3.94
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v(x,r,c)--v(x,r,-c) 3.3.95

w(x,y,c) =w(x,y,-c)

Anti-symmetry about the z axis gives

3.3.96

u(x,y,z) =-u(-x,-y,z)

v(x,y,z) = -1,(-x, -y,z)

w(x,y,z) = w(-x,-y,z)

3.3.97

Symmetry about the xy, xz, and yz planes gives

xy_" u(x,y,z)= u(x,y,-z)v(x,y,z)-- v(x,y,-z)
w(x,y,z)=-w(x,y,-z)

3.3.98

u(x,y,z)-- u(-x,y,z.)
v(x,y,z)=-v(-x,y,z)
w(x,y,z)=-w(-x,y,z)

3.3.99

XZ:
u(x,y,z)=-u(x,-y,z)v(x,y,z)= v(x,-y,z)
w(x,y,z)=-w(x,-y,z)

3.3.100

Eqn. (3.3.98) implies that

w(x,y,O) = -w(x,y,0) =0 3.3.101

Further, periodic boundary conditions for w at z=±c imply

w(x,y,c)=w(x,y,-c) 3.3.102

but
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w(x,y,c) = -w(x,y, -c)
3.3.103

which gives

w(x,y,c) =w(x,y,-c) =0 3.3.104

Similarly, at y = 0, eqn. (3.3.100) implies

u(x,O,z)=w(x,O:)=0 3.3.105

and at x = 0, eqn. (3.3.99) implies

v(o,y:) =w(O,y:)=o 3.3.106

Also, using eqns. (3.3.98)-(3.3.100) to trivialize the periodic boundary conditions in

eqns. (3.3.88)-(3.3.96)gives the following non-trivial conditions

a a

• , v(__,y,z.)=-v(-_,y,z.)=v° 3.3.107

u(x,-_,z)=-u(x, --_ ,z)=Uo
3.3.108

w( :l:i ,y ,z) =w( x , :l:i ,z) =w( x, y , :f.c) =O
3.3.109

If the l/8th unit cell in the region x,y,z > 0 is again considered and the origin is

translated to its center as shown in Figure 3.16, the non-trivial boundary conditions

become

v( a . __ a . v o

5
3.3.110



68

G a Uo

u(x,_,z):-u(x,--4,zl=y
3.3. lll

w( ± 4 ,Y,Z) =W(X, + 4,z) =w(x,Y, +2 ) =O
.3.3.112

In order to obtain boundary conditions for the 1/32nd subcell, symmetries inherent to the

l/Sth subcell must be exploited. Anti-symmetries of geometry and loading similar to the

anti-symmetries around the x axis for e_ gives the following relations about the x and y

axes in Figure 3.16 of the l/8th subcell subjected to %.

u(x,y,z)=-u(x,-y,-z)
x: v(x,y,z) = v(x,-y,-z) . 3.3.113

w(x,y,z)= w(x,-y,-z) •

•- y: u(x,y,z)-- u(-x,y,-z)
v(x,y,z) : -v(-x,y,-z)
w(x,y,z) = w(-x,y,-z)

3.3.114

Anti-symmetry about the z axis gives

Z:
u(x,y,z)=-u(-x,-y,z)
v(x,y,z) = -v(-x,-y,z)
w(x,y,z)-- w(-x,-y,z)

3.3.115

At x,y = 0, the following conditions develop.

u(0,y,z) = u(0,y,-z)
v(0,y,z) =-v(0,y,-z)

w(0,y,z) = w(0,y,-z)

3.3.116

u(x,O,z)=-u(x,O,-z)
v(x,0,z)= v(x,O,-z)

w(x,O,z)= w(x,O,-z)

3.3.117
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Equations (3.3.116) and (3.3.117) along with the following four are the boundary

conditions for the 1/32nd subcell.

Vo 3.3.118
v(4'Y ) 2

. a . uo 3.3.119

w(4,Y,X) =0 3.3.120

w(x,4,z. ) =0 3.3.121

Again, it must be emphasized that these are for the special case of e_y where the

displacements on the x and y faces of the full unit cell are the same. If different
p

displacements are applied, u and v displacements on opposite faces on the 1/32nd subcell

become dependent on one another and this is very difficult to enforce using finite

elements.

3.3.5 Savings due to unit cell reduction

To illustrate the amount of savings

which is produced by the various simplications

mentioned previously, the memory and CPU

time required to analyze the model in extension

are compared for the 1/32nd, l/8th and full

Table 3.2: CPU times and memory

requirement for 111 translated model.

Cell

Type

1/32nd

l/8th

CPU

time

(s)

2

7

Memory

Requirement

(Words)

3.4K

25K

Full 90 0.625M

unit cell models of a woven composite. A summary of the results is presented in Table
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3.2. Theamountof memoryrequiredfor the 1/32nd111translatedsubcellfor extension

is about3.4K Words. A l/8th 111translatedsubcellrequiresalmosteight timesthat at

25K Words, andthe full unit cell requires0.625M Words, about 180timesthat of the
- .

1/32nd subcell. CPIJ time is also cut severely by these simplifications. The 1/32nd

subcell takes about 1/50th the amount of time required to analyze the complete unit cell.

3.4 Material Properties

The material properties used in this investigation were selected in order to allow

direct comparison with some existing results [8]. This made it possible to detect errors

which may have been made in the analysis. For the warp and fill tows, the elastic

properties are the same and are given below with the resin properties.

Ffber Tow:.

Resin:

Ex = 206.9 GPa, Ey = E, = 5.171 GPa

v_y = vxz = Oyz = 0.25

G_y = G= = Gr, = 2.386 GPa

Xt = 1034 MPa, X_ = 689.5 MPa

Yt = Zt = 41.37 MPa, Yo = Z, = 117.2 MPa

S_y = Sy, = Sx_ = 68.95 MPa

X t

E = 3.45 GPa, v = 0.35, G = 1.28 GPa

= 103.4 MPa, Xc = 241.3 MPa, S = 89.6 MPa
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3.5 Convergence Study

A convergencestudywasdonein order to determinefinite elementmodelswhich

couldadequatelypredictmoduliandstressdistributions. The effectiveelasticproperties

of thecompositewill bepresentedfirst. A studyof translatedand extrudedmeshesis

studied. The meshesusedfor the convergencestudy are shownin Figures3.18 and

3.19.

3.5.1 Elastic Properties

The convergence of elastic properties for the translated and extruded model with

a waviness ratio of 1/3 is presented in Tables 3.3-3.6. There are only 6 independent

elastic material parameters for a balanced plain weave composite. These are Ex, v_, v,_,

_, G_ add G.,. E_ and F_ are equivalent as well as v,_ and vr,. Also, Gr, is the same

as G_. Material properties of the woven composite are studied individually to determine

the convergence of each with mesh refinement.

?

Translated Model

Tables 3.3 and 3.4 show the convergence of the elastic material properties for the

translated model. For the 121 multiple angle model, th e value of Ex is only 0.8% greater

than that predicted by the nearly converged value of the translated 454 multiple angle

model which contains 25 times the number of elements than the 121 model. The single

angle 121 model predicts a value that is -6.6% less than that predicted by the multi-angle

454 model. It is interesting to note that convergence of the values is substantially
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Ill 112 211
42Nodes 62Nodes 56Nodes

4 Elements 6 Elements 6 Elements

/_'j

121 222 232

121 Nodes 221 Nodes 436 Nodes

16 Elements 32 Elements 72 Elements

343 454

1049 Nodes 2056 Nodes

192 Elements 400 Elements

Figure 3.18: Meshes used in convergence study for translated tows. Elements are

3D 20-node hexahedrals.
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111
105Nodes

16Elements

"-. ..;S.f. ;Z .... :?7 t

112 211

161 Nodes 127 Nodes

24 Elements 20 Elements

121 222 232

228 Nodes 396 Nodes 687 Nodes

39 Elements 69 Elements 128 Elements

343 454

1500 Nodes 2763 Nodes

295 Elements 564 Elements

Figure 3.19: Meshes used in convergence study for extruded tows. Elements are

3D 20-node hexahedrals.
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different for the multiple and single angle models. The coarse multiple angle models

over predict the values of Ex, whereas the coarse single angle models under predict

values for Ex. The 343 multi-angle model produces a value for Ex which is less than

.04% greater than that of the 454 multi-angle model and still has only half the elements

of the 454 model. Similarly for v_r and Vx_, the 343 multi-angle model produces results

which are within 1/10000th that of the 454 multi-angle model. Although the single angle

model has not converged, it seems to be approaching the results predicted by the 454

multi-angle model.

As Table 3.4 shows, values for Ez, Gxy can be predicted using very rough models

as can be seen by the small variance of the calculated values as the model is refined.

Even the 111 multi-angle model was able to predict values within 0.67% of the

converged values for these two properties.

For G,_, predictions converged as slowly as the values for E_, v,=, and v_. This

indicates that for these for properties, a fairly refined mesh is needed. Therefore, for

moduli comparison in the results section, the 343 multi-angle model will be used since

values predicted by it differ by less than 1% from those of the 454 model, which requires

substantially higher ammounts of memory and CPU time.

Extruded Model

Convergence of the extruded model with multiple angles was as fast or faster than

the translated model with multiple angles as shown in Table 3.5 and 3.6 due to the higher

number of elements in an extruded model compared to like translated models.
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Consequently, the 343 multi-angle model will also be used for prediction of material

properties for the extruded model.

3.5.2 Stress Distributions

Translated and exto_ded meshes were also studied to determine the refinement

required for adequate analysis of the stress distributions. Figure 3.18 and 3.19 show the

meshes used for the convergence study of the translated and extruded meshes. For this

subsection, only translated meshes will be covered.

Figure 3.20 shows a_, stress distribution in the warp tows for various translated

meshes subjected to a 1% extensional loading in the warp direction. As can be seen

from the figure, the 111 model stress distribution is in no way converged as compared

to the 454 model. Even the 343 model is not the same as the 454 model which is the

largest mesh which could be run with the available resources. Although the meshes are

not completely converged, the difference between the 343 and 454 is small enough to

suggest that the 454 model is sufficient for this research.

A comparison of the multi-angle and single angle elements is given in

Figure 3.21. In this figure, the _rxzin the warp tows is compared for the 454 translated

model after being subject to a 1% extensional loading. Notice that the single angle

model is predicting a non-zero stress at the end of the warp tow which should be zero

due to symmetry. To get rid of this error using the single angle approximation,

substantial mesh refinement would be necessary at the ends of the tow. For this reason,

the multi-angle 454 model will be used to evaluate the stress distributions in the RVE.
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\

\

Mesh: i 11

÷|, L

It

Mesh: 121

Figure 3.20: Convergence of t_xx stress distributions in warp tows of translated

meshes. Meshes were subjected to 1% exx-
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Mesh: 232

Mesh: 343

Figure 3.20: (continued)
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Mesh: 454

Figure 3.20: (continued)
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SingleAngleElements

A

Multi-Angle Elements

Figure 3.21: Comparison of multi-angle and single angle elements in

translated 454 models subjected to 1% exx strain. Notice that single

angle model predicts non-zero stress at 'A'.
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3.6 Failure Criteria

For this research, a modifictaion of the Tsai-Hill failure criteria will be used to

determine the importance of the calculated stresses. The Tsai-Hill failure crieteria

predicts failure if

y2 Z 2 %t°" X 2 : Z2 %1°33 -

[°I'(°I':°?_F+__+__ 0.22033+ "'12 + "13 + _23 >I

3.6.1

The values for X, Y, and Z are the average of the tensile and compressive strengths of

the material. If the material strengths vary greatly, this model may not provide adequate

prediction of failure. Woo [8] instead uses a modified Tsai-Hill criteria given by

_T: _T; _T;-{_:oZo :o:ooZo.)

i+i+I)oo .(o,_I'+(,,,,L(,,,_'_I-_ _ _J " ,, IsTJ t_:TJtsTJ

3.6.2

where, for tension

x=x,, r--Y,,z--z, 3.6.3

and for compression

x=xc, r=L, z=L. 3.6.4

Also, the values for X o, Yo and Zo are given by
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XoX,+Xc yo=Y,"Yc Zo=.Z, +Zc 3.6.5
2 ' 2 ' 2

This theory is based on Von Mises isotropic yield criteria and should provide adequate

predictions of failure [9].

If two models are compared at the same macroscopic strain and one predicts a

maximum failure criteria of 7", and the second predicts a maximum failure criteria of T2,

then the percent difference in the macroscopic strain to failure would be valuable to

know. For linear elasticity, the strains in the material vary linearly with changes in the

applied macroscopic strain and can be written as

eq=_.fi 3.6.6

The stresses at any point are related to the strains by
t

o o=C ijnett 3.6.7

Substituting (3.6.6) into (3.6.7) gives

oo=C0nXtfi 3.6.8

Substituting (3.6.8) into (3.6.5) gives
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Factoringout _ gives

I 1 1

Xo Yo_ Zo/ [ .o ro -o/
C12_kt a 2 C23k/kk/ 2Cl3u_. u 2+

The portion of the equation in brackets is constant as long as _ doesn't change sign and

can be replaced by a constant So. Which gives

At _l and e2 eqn. (3.6.11)gives
s

Solving for So gives

Soe2_ 1 3.6.11

--2

So_et=Tl, So_=T 2 3.6.12

If _! is the macroscopic strain to failure then at failure,

3.6.13

Sotelt2=l, So,e/22 = 1 3.6.14

The percent difference of e/t to _/_ is given by

_-2_ ,
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%difference = l O0 x
%-%

%
3.6.15

Substituting (3.6.14) into (3.6.15) gives

3.6.16

Rewriting gives

%difference =1O0 x 1 - 1

" so,so,
3.6.17

Substituting in (3.6.13) gives

%difference= l OOxl_tt - I I

3.6.18

which is the percent difference of _/t to e/2 in terms of the maximum predicted failure

criteria using the Tsai-Hill theory. This equation will be used to help in the comparison

of the extruded and translated models in the following chapter.
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IV. RESULTS AND DISCUSSION

The previouschaptersdetail how an analysismay be performedon woven

compositesusingfinite elements.By usingthediscussedmeshgenerationtechniquesand

applyingboundaryconditionsfor desiredloadings,almostanyplainweavecompositecan

beanalyzed. The following is a comparisonof translatedand extrudedtowsat various

waviness-ratios. The tows have a lenticular cross-section,and the cross-sectionis

constantalong the tow path. The tow path is sinusoidalfor both the extrudedand

translatedmodels.

Analysis of extruded and translated tows is performed in order to determine the

differences in predicted elastic properties as well as stress distributions in the composite.

Comparison will be made between 1/3, 1/6 and 1/20 waviness-ratios of extruded and

translated tow types.

4.1 Elastic Properties

The volume fraction of extruded and translated tows is compared at different

waviness-ratio in Figure 4.1. This figure shows that the translated tow always contains

the same amount of tow regardless of change in waviness-ratio. This is obviously

incorrect, and is due to the fact that the cross-section shape is not being modelled

correctly. As waviness-ratio is increased, the volume fraction of the extruded tow drops

off. This alone should cause a notable difference in the predicted elastic properties at

higher waviness-ratios.

Calculation of the elastic properties was performed using a 1/32nd 343 multiple
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v t = Volume fraction of tow in translated model

v e = Volume fraction of tow in extruded model

Av = v t - ve = Tow Volume Fraction Difference

WR Av

1/3 2.972e-2

1/6 6.616e-3

1/20 5.5e-4

Figure 4.1: Variation of tow volume fraction with waviness ratio for

extruded and translated models.
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anglemodelfor boththeextrudedandtranslatedtowsfor all moduli andPoisson'sratios.

Thesemeshesareshownin Figure4.2.

Figures 4.3-4.8 comparethe predictedmoduli of the extrudedand translated

models. Figure 4.3 gives the percentagedifferenceof the translatedmodel over the

extrudedmodelversusthe waviness-ratiofor Ex. As canbeseenfrom the figure, there

is little differenceat low waviness-ratio.This is commonto all of the predictedelastic

properties.This is expected,sinceat low wavinessratio, thereis very little differencein

the geometryof the two modelswhich is also reflectedin the tow volume fraction in

As wavinessincreases,thedifferencegrowsto around6.8%at a wavinessFigure 4.1.

of 1/3.

Using therule of mixtures,thepredicteddifferencein E, at WR = 1/3 would be

4.5%. This would seem to indicate that something in addition to tow volume fraction is

causing the difference between the predicted moduli. For E,, this difference may be

caused by cushioning of the warp tows by the resin elements between the warp and fill

tows of the extruded model.

For E z there is only a 0.63% difference at WR = 1/3 as shown in Figure 4.4. This

is due to the fact that the tows and the resin have about the same E,. Since there is little

difference in the predicted moduli, either model would be adequate for prediction of this

moduli with this material model.

Predictions of G,y using the translated model are 2.4% greater than that predicted

using the extruded model as shown in Figure 4.5 for WR = 1/3. Little difference in this

shear modulus should be expecied due to the shear moduli of the constituenls being so

close. Additionally, there should be little difference in the predicted values of Gx,.
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l
Extruded: WR=I/3

l

Translated: WR=I/3

f

Extruded: WR=I/6 Translated: WR=I/6

Extruded: WR= 1/20 Translated: WR= 1/20

Figure 4.2: Meshes used for calculation of elastic properties.
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Figure 4.6: Percent difference of translated tow prediction over extruded

prediction of Gxy.



94

Values for G_zindicatea 3.25% higherprediction by the translatedmodel over the

cxlrudcd model as shown in Figure 4.6.

The Poisson's ratios vs. waviness-ratio in Figures 4.7 and 4.8 indicate that for an

extension in the warp direction, the extruded model will contract slightly more than the

translated model in the fill direction. This is due to the translated model being stiffer in

the fill direction than the extruded model. As a consequence of the fill direction being

more stiff in the translated model, the translated model will contract slightly more in the

direction perpendicular to the weave where it is softer.

At low waviness-ratios, both the extruded and translated model predict very similar

results. For waviness ratios of 1/6, there is less than 1% difference for all of the moduli

and Poisson's ratios. One would expect that since such little difference is being noted in

the elastic, properties between the two models, the stress distributions inside the two

models would be similar. This will be discussed in the next section.

4.2 Stress Distributions

The stress distributions are not as easily compared as the moduli of the composite

due to the amount of data which must be presented. For example, for one load case at

one waviness-ratio, to fully compare extruded and translated model predictions would take

a minimum of 36 figures. For this reason, only stresses which contribute significantly to

the failure of the material will be considered. These will change with the type of loading.

A presentation of the differences at a waviness-ratio of 1/3 will be presented, followed

by waviness-ratios of 1/6 and 1/20, respectively.
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The stresscontoursareplottedrelativeto the materialcoordinatesystemfor tile

different constituents.All stresseswhich are relativeto tile materialcoordinatesystem

aresignified by a prime on thesubscriptto avoidconfusionwith stressesrelativeto the

physicalcoordinatesystem.

4.2.1 WR = 1/3

For this waviness ratio, extension in the warp direction, xz shear and xy shear will

be presented for the unit cell in Figure 4.9. This waviness ratio shows the greatest

amount of difference and will be discussed in greatest detail. Note that the difference in

tow volume fraction is shown in Figure 4.1. Again, this difference should cause some

difference between the two models.

Loading in Warp Direction

A 1% exx strain is applied in the x direction on the woven composite. Figure 4.10

gives Tsai-Hill failure criterion for the warp tows, fill tows, and resin. As can be seen

from the figure, failure will initiate in the warp tows. Even though the contours appear

very similar, the maximum failure criteria predicted by the extruded model is 7% higher

than that predicted by the translated model. This indicates that failure will be predicted

at a 3.3% lower macroscopic strain level in the extruded model than the translated model

for this type of loading. The important stresses to consider for extension in the warp

direction are determined by normalizing each stress with its appropriate strength as given

in the previous chapter.

If the maximum normalized stresses are examined for the warp tows, it can be
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Y

Figure:4.9: Unit cell usedfor analysisof plainweavesymmetrically
stackedwovencomposite.
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(a) Warp tows.

Figure 4.10: Comparison of Tsai-Hill failure criteria predicted with translated and

extruded models after subjecting RVE to 1% exx.
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Figure 4.10: (continued)
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Figure 4.10: (continued)
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seen that the main contributors to the failure are the o,.,: and _,'x' stresses. These stresses

appear to be the most important and consequently, only these two stresses will be

presented.

Figures 4.11 and 4.12 compare the normalized ¢_._. and c_.z. stress distributions

generated with the extruded and translated models. As can be seen from Figure 4.11, the

o_.,. stresses predicted for the warp tows in the failure region are very similar. It is only

near the edge of the tow where one can see the most difference in the stress distributions

of the translated and extruded models. The translated model predicts a high stress in this

region which is not predicted by the extruded model. This concentration appears to be

caused by the fill tows shearing this region which, when rotated to the material coordinate

system, appears as a ¢_x'_'concentration. The extruded model has a resin region in

between the fill tows, so does not experience this concentration.

The o,._. stress distributions in the fill tows will be ignored since the distributions

are very similar.

The normalized o,.x. stress distributions for the resin in the two model are shown

in Figure 4.11. Again, these are very similar. However, the extruded model shows four

regions of stress which are experiencing a strange stress distribution as indicated by the

letter 'A'. This is due to bad elements in these regions which are causing a localized

disturbance. The elements do not seem to affect stresses in the warp and fill tows or the

rest of the resin which are about two elements away from this region. Therefore, the

stresses in these regions will be ignored. The rest of the resin is about the same in both

models and uninteresting and will not be discussed.
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Translated

Extruded

(a) Warp Tows

Figure 4.11: Comparison of Crxx in translated and extruded models after subjecting

RVE to i% Exx strain.
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Figure 4.1 l" (continued)
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Translated

Extruded

Figure 4.12: Comparison of Cyzz distributions in warp tows after subjecting

RVE to 1% Exx strain.
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Figure4.12comparesthe normalizedc_.,.,distributionsfor the warp tows in the

extrudedandtranslatedmodels.This stressis by far themostimportantfor extensionin

the warp direction. This stresswill causea modeI crackto startbetweenthewarp tow

and theresinin theregionof highestconcentration.This concentrationis causedby the

warp tows wanting to straighten. The tendencyto fail in this region shouldchange

drasticallyif thetowsaresimply stackedratherthansymmetricallystacked.This should

be investigatedin a laterstudy. Thedifferencesin theextrudedandtranslatedmodel in

the warp tows for oz.,,areshownin Figure4.12. The extrudedmeshshowsa region

which is morehighly stressedthanthetranslated.Themaximumstressexperiencedby

theextrudedmeshis 3.3%higherthanthatpredictedby thetranslatedmesh. Thereis no

substantialdifferencein thewarptow c_,.z, stress distributions other than this. The cry,z,

stress distn'butions of the fill tows and resin are uninteresting as and will not be presented.

XY Loading

The Tsai-Hill failure criteria are plotted in Figure 4.13 for a 1% ezy macroscopic

shear strain applied to the unit cell shown in Figure 4.9. Figure 4.13 shows that failure

will initiate in the tows in the region indicated with letter 'A'. The maximum failure

criteria for the translated model is 27.97% larger than the maximum predicted by the

extruded model. This is a substantial difference. Using equation (3.6.18), the extruded

model will fail at a macroscopic strain level 14.2% less than the translated model. This

indicates a large difference between the translated and extruded modelling. If the

maximum normalized stresses are examined, it is seen that the primary contributing
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stressesto failure are tile shearingstresses,_x'y',_x',:and G¢z'-Thesestresseswill be

examinedfor differencesbetweentheextrudedandtranslatedmodels.

Sinceall thetowsof thewovencompositeundergothedeformation,the fill tow

will not needto bepresentedfor anystressdistribution.ThenormalizedG_.y.distributions

areshownin Figure4.14 for theextrudedandtranslatedmodels. The maximumstress

predictedby the translatedmodel is 10.7%greaterthan that predictedby the extruded

model. This indicatesthat theneighboringtows in thecompositearehighly influencing

thestressesin this region. Sincetheextrudedtowsareseparatedby regionsof resin,the

extrudedmodelwill predictahigherstrainto failurethanthatpredictedby thetranslated

model in this region.

The resin in this region is shownin Figure 4.15 for theextrudedand translated

models. /ks can be.seen from the figure, both models predict similar stress pattems,

except for the region in which the bad element exists in the extruded model. The

translated model predicts a region which is under a higher stress than the extruded model

as indicated by the white region in the plot of the translated model. This region is also

where the four tows of the l/Sth unit cell cross. Since the extruded tows are separated,

the extruded model is spared this high stress.

The comparison of normalized stress contours of the warp tow for oy'z' are shown

in Figure 4.16. The figure shows a large differ_ence in the stress being experience by the

tow. The extruded shows its highest concemration near the center of the tow (region 'A'),

where as the .translate.&J shows a 2.8,3% greater stress at the intersection of the four tows

in the l!8th unit cell _at 'B'. This high s.tress is again caused by the tows being so close
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Extruded

(a)

Figure4.13: Comparisonof Tsai-Hill failurecriteriapredictedwith translated
andextrudedmodelsfor (a) towsand(b) resinafterbeingsubjectedto a 1%

exystrain.
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Figure 4. I J: (continued)
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Translated

Extruded

Figure 4.14: Comparison of normalized Oxy distributions in tows of
translated and extruded models with WR= 113 after being subjected to

a 1% macroscopic exy strain.
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Figure 4.15: Comparison of normalized _xy distribqt, ions itl resin _f
translated and extruded models with WR= 1/3 after being subjected to

a i% macroscopic exy strain.
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in the translated model which is not present in the extruded model. This stress difference

is what is causing the largest difference between the predicted failure of the two models.

The _y._. for the resin is inconsequential compared to the stress levels in the tows.

The majority of the tow volume is experiencing stress larger than the highest stress

experienced by the resin relative to their strengths so stress distributions in the resin will

not be presented. The ox._. for the resin is the same as that for oy'z' - just rotated 90 ° about

the z axis - and will not be presented.

The stress contours for _x'z' shear stress for the warp tow is relatively uninteresting

and will be skipped.

The region of failure predicted for this XY loading is in the region where the most

difference is shown between the two type of modelling, therefore, the greatest amount of

difference "should b_ shown with this type of loading. When extensional loading is

applied in warp direction, failure is predicted to occur in an area where the models are

substantially the same, therefore little difference was noted between the two models.

Little difference will also be noted between the two models when a Exz shear strain is

applied macroscopically to the model because failure is predicted in a region where the

models are also very similar, as will be shown in the following section.

XZ Loading

The Tsai-Hill criteria is plotted in Figure 4.17 for the extruded and translated

model subjected to a 1% ex_ macroscopic shear. The figure show that failure is predicted

in the resin of both models as indicated by the letter 'A'. The translated model predicts
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(a) Comparison at different scales

Figure 4.16: Comparison of normalized Oyz distributions in warp tows of
translated and extruded models with WR= 1/3 after being subjected to

a 1% macroscopic exy strain.
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Translated

Extruded

(b) Comparison at same scales

Figure 4.16: (continued)
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a failure criterion 4.5% greater than that predicted by the extruded model. Failure will

occur at a 2.3% lower macroscopic _strain l_eyei in th_e tjanslated model than in the

extruded model.

The high stress level is - as stated earlier - in a region where the two models differ

very little. Therefore, little difference is no.ted in the two models. If the stacking of the

woven composite were changed, a substantial difference may be noted in the potential for

failure of this region and possibly the two type of modeling.

4.2.2 WR = 1/6

For this waviness ratio, the difference in the tow volume fraction is less than 1%

as indicated in Figure 4.1. This is very little difference and little difference is expected

between th_ two mo.d.e!s. As with the above waviness-ratio, the models will be compared

for difference with three different loadings: warp extension, xy shear, and xz shear.

Loading in Warp Direction

As with warp extension for WR = 1/3, the failure for this type of loading will

begin in the warp tows as shown j.n Figure 4.!8. Also, failure will initiate at a lower

macroscopic strain !eve! in the extruded model than in the translated model by 1.4%

below that predicted by the transl_Itod model. Recall that for a WR of 1/3, the difference

was 7%. The stresse_ which c_ntrib..ute most to the failure are again a,.,. and az.z.. There

is very little diff_erenc.e in between the maxil_0m and minimum predicted with either

loading, a_ad _;be _tr.es.8 disCribu_tigns _re also v¢ry similar., therefore, no distributions will
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(a) Warp Tows

Figure 4.17: Comparison of predicted Tsai-Hill failure criteria for translated
and extruded models with WR=I/3 after subjecting RVE to a 1% macroscopic

Exz strain.
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Figure4.!7: (continued)
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be presentedfor this typeof loading.

If this waviness-ratio is compared to tile results of WR = 1/3 in Ihc previous

section, it can be noted that the l/6th waviness-ratio can withstand about a 21% larger

macroscopic strain than the l/3rd waviness before failure initiates. This is because the

warp tows are not trying to separate as much in the region of failure.

XY Loading _

Figure 4.19 shows the Tsai-HiU failure criteria for the two models after subjecting

each to a 1% Exy shear strain. Failure is again predicted in the center of the tows as it is

for WR = 1/3. For this loading, the extruded model will fail at a macroscopic strain 0.6%

less than the translated model. This difference is insignificant.

If the stresses which contribute to failure are examined, the only stress with any

significant difference is the ay.z. of the warp tow as shown in Figure 4.20. The translated

model is still seeing a significant region of stress in the region where the tows cross at

'A'. This is not apparent in the extruded model which predicts a region of high stress

near the edge of the fill tow as indicated by the letter 'B'. The separation of the warp

tows by resin is still saving the extruded model from significant levels of t_y.z, stress.

Other than this there is no significant difference.

Comparing this waviness-ratio to the l/3rd waviness above, it'is seen that the

extruded model will fail sooner at a l/6th waviness, but the translated will fail first at a

l/3rd waviness for xy shearing.
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(a) Warp Tows

Figure 4.18: Comparison of predicted Tsai-Hill failure criteria for translatcd

and extruded models with WR= 1/6 after subjecting RVE to a 1% macroscopic

exx strain.
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Figure4.18:(continued)
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(c) Fill Tows

Figure4.18:(continued)
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(a) Tows

Figure 4.19: Comparison of prcdictcd Tsai-Hill failure criteria for translated

and extruded models with WR= I/6 after subjecting RVE to a I% macroscopic

Exy strain.
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(b) Resin

Figure 4.19: (continued)
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XZ l_ading

Figure 4.21 shows plots of the Tsai-Hill failure criteria for the two models

subjected to a 1% ex_ shear strain. Only the resin and warp tow of each model are shown

- because although notable differences are apparent in the fill tow, the level of the predicted

criteria is so low that it woul_ be of no consequence. Note that there is little difference

between the two models. Failure will start in the resin of both models as indicated by

the levels of the plots. The difference in the maximum predicted by the translated model

is 4.5% greater than that predicted by the extruded model. The difference in the applied

strain to failure is 2.14% less in the translated model compared to the extruded model.

The stress which is the primary cause of failure in this region is _'z., as it was for WR

= 1/3. The normalized ox',' stress distributions for the resin and warp tow are shown in

Figure 4.22. There is little difference in the twodistrjbutions with only a 2.3% difference

in the maximum stress predicted by the translated over the extruded. Since there is little

difference of the models in the region of failure, there will be little difference in the stress

distributions there. It is possible that a progressive failure analysis will reveal more

differences in the two models for this type of loading.

Again, if the failure at this waviness is compared the l/3rd waviness, it is seen

that the l/3rd will fail at a macroscopic strain 53.8% lower than the strain required to fail

the l/6th waviness. This is because the maximum angle which the materials in the tows

are experiencing is greater in the WR = 1/3. This is also shown by the predicted moduli

of the two waviness ratios. The 1/3 waviness predicts a value which is 12.4% greater

than that predicted by the 1/6 waviness. As stated earlier, the failure scenario could
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(a) Tows

Figure 4.20: Comparison of normalized Oy z distributions in warp tows of
translated and extrud._ed models with WR= 1/6 after subjecting RVE to a

1% macroscopic exy strain.
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changedrastically if tile matsaresimply stacked.

4.2.3 WR = 1/20

If the amount of difference continues to decrease between the two models as

waviness-ratio is decreased, then there should be little or no difference in the predicted

stress distributions between the translated and extruded models at this waviness-ratio.

Unfortunately, comparison of the stress distributions between the two models was not

practical because the extruded model predictions are very poorly due to elements near the

edge of the 1/32nd model which have very bad aspect ratios. For this reason, no
• ,0 ._

comparison will be made between the two models at this waviness-ratio.
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(a) Warp tows

Figure 4.21: Comparison of predicted Tsai-Hill failure criteria for translated

and extruded models with WR=I/6 after subjecting RVE to a i% macroscopic

Exz strain.
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Figure 4.21: (continued)



128

Translated

Extruded

*i Ii
• +2.4_[

(a) Warp tows

lzigmv 4.22: Comparison of normalized C_xz distributions of translated

and cxttudcd mo.dcls witl/WR= 116 afler subjecting RVE to a 1% macroscopic

g,Xz SLFaM.
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Figure 4.22: (continued)
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V. CONCLUSIONS

Thc objective of this study was to determinewhich model, the extrudedor

translated,reflectsreality better,andwliethersuchextensivemodelingis really necessary

to adequatelyrepresentthematerialpropertiesassociatedwith wovencomposites.To do

this one must considerwhatwasstatedin the previouschapteras well ascomparethe

geometryof eachmodelwith thatof actualwovencomposites.

The geometryof thetwo modelsbothhavedrawbacks.The translatedmodel,at

high wavinessratio, predictsthat paralleltowswill notbeseperatedby resin. This is the

major flaw of the translatedmodel. The extrudedmodel allows for a seperationof

parallel tows. This differencein behavioris largestwhenane_yshearstrainis applied

to the composite. Anothergeometricaldifferenceis that thetranslatedmodelpredictsa

thinning of themiddleof thetowsat highwaviness:ratioswhich is alsonot correct. This

is shown in the _ stressgradientsin the warp extensionof the two models. The

extrudedtows also possesssomedeviationfrom reality. One is that there is a gap

betweenthefill andwarp tows. In reality,the towsarepressedagainstoneanotherand

no resin pocketsexist. However, this doesnot seemto affect the stressdistributions

predictedwith this model. And finally, bothmodelsassumea constantcross-section.

This mayor may not be importantandshouldbepursuedin later studies.

For the predictionof elasticmoduli, either model is adequateat low waviness

ratios. At higherwavinessratioshowever,themodulibeingpredictedbecomesimportant.

For E_,thereis suchlittle difference- withduerespectto thematerialsystemusedin this

analysis- and eitlaermodelwill-predict valueswithin 1%of theother. Even if a very
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coarsemeshis used,thereis little differencein the predictedmoduli. If a high degree

of accuracyis not required,then either model is adequatefor E_,G_y,G,,. and the

Poisson'sratiosv,yand v_,. However,for greateraccuracy,theextrudedmodelgives a

bettergeometricmodelof reality andshouldbe used.

Whenstressdistributionaredesired,theregionof interestisof primaryimportance

in selectingoneor theothermodel. If thereis little geometricdifferencebetweenthetwo

modelsin theareaof interest,theneithermodelwill be adequate.This wasshownfor

extensionin thewarp directionandXZ shearat 1/6and 1/3waviness-ratios.However,

if there is a substantialdifferencein the geometryof the region of interest, then the

extrudedmodelshouldprovidea betterapproximationdue to its superiormodelingof

reality comparedto the translatedmodel. At very low waviness-ratios, the translated

model must be used unless significant refinement of the mesh is possible to eliminate bad

element aspect ratios. The difference in the two models is very minor at very low

waviness and either model should be adequate for stress distributions.
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VI. FUTURE WORK

The chapternarratesbriefly on futureresearchwhich this studyhasshowt_to be

important. This study dealt with the effect of only one of many possibleassumed

configurationswhicha researchermaymake. It would be fruitful to studytheeffect of

other geometrychangeson the predictionsmadeusing either numericalor analytical

techniques.Somepossiblegeometryconfigurationsconcernedwith plainweaveswhich

maybeexaminedare:theeffectof how matsarestacked,nestingof themats,unbalanced

weaveconfigurations,differentwavinessratiosfor fill andwarptows,cross-sectionshape,

and non-sinusoidaltow paths. Satinweavesandotherbraidswould alsobe interesting

to study,but verydifficult dueto thesizeof theunit cells involved for threedimensional

study.

Another aspe_:tof wovencompositeswhich would be interestingto study is the

effect changesin thematerialsasthecompositeis loaded. As thecompositeis loaded,

the tows do undergosomeanjount of rotation at points inside the tow. It would be

interestingto seehow muchof aneffectthiswouldactuallycauseon thepredictedstress-

straincurveof thecomposite.

Progressivefailureof plainweaveswouldalsobeof interest. In this study,very

localizedregionsof failure werepredictedfor XZ shearloadingandvery little difference

waspredictedbetweento two typesc_f!9odeling. A progressivefailure analysismight

revealsubstantialdifferencesif it were studied.
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